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ABSTRACT. We use tropical algebras as platforms for a very efficient digital signature pro-
tocol. Security relies on computational hardness of factoring a given tropical matrix in a
product of two matrices of given dimensions; this problem is known to be NP-complete. We
also offer a secret sharing scheme with an arbitrary access structure where security of the
shared secret is based on computational hardness of the same problem.

1. INTRODUCTION

In [7], [8], we employed tropical algebras as platforms for cryptographic schemes by mim-
icking some well-known classical schemes, as well as newer schemes like [9], in the “tropical"
setting. What it means is that we replaced the usual operations of addition and multiplica-
tion by the operations min(z,y) and x + y, respectively.

An obvious advantage of using tropical algebras as platforms is unparalleled efficiency
because in tropical schemes, one does not have to perform any multiplications of numbers
since tropical multiplication is the usual addition, see Section [2] The focus therefore is
entirely on security. Several “tropical" protocols were attacked (see e.g. [II, [2], [1I]) by
showing that one or another problem known to be hard in the worst case, turns out to be
easy for a non-negligible set of inputs.

In this paper, we use a tropical algebra of matrices to design a digital signature scheme and
a secret sharing scheme with an arbitrary collection of secret-recovering coalitions. Security
of the private keys in these schemes is based on computational hardness of factoring a given
tropical matrix in a product of two matrices of given dimensions. This problem is known to
be NP-complete, see [13].

2. PRELIMINARIES

We start by giving some necessary information on tropical algebras here; for more details,
we refer the reader to the monograph [3].

Consider a tropical semiring S, also known as the min-plus algebra due to the following
definition. This semiring is defined as a linearly ordered set (e.g., a subset of reals) that
contains 0 and is closed under addition, with two operations as follows:

r @©y = min(z,y)
TRQY=1+Yy.

It is straightforward to see that these operations satisfy the following properties:
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associativity:
r®Yd2)=(rDy) D2
T®(y®z)=(r0y) =z

commutativily:
rTOYy=y>dx
TRY =Y.
distributivity:
(@Y Rz=(2R2)® (Y 2).
There are some “counterintuitive" properties as well:
rdor==x

r®0=ux
x @ 0 could be either 0 or z.

There is also a special “e-element" € = oo such that, for any x € S,
ebr=x

ERXQ T =¢€.

2.1. Tropical matrices. A tropical algebra can be used for matrix operations as well. To
perform the A® B operation, the elements m;; of the resulting matrix M are set to be equal
to a;; @ b;;. The ® operation is similar to the usual matrix multiplication, however, every
“4+" calculation has to be substituted by a @& operation, and every “-" calculation by a ®
operation.

1 2 0 3 0 2
Examplel.(5_1>€9(28>_(2_1>.

1 2 0 3 1 4
Examp1e2.<5_1>®(28>:(17).

The role of the identity matrix [ is played by the matrix that has “0"s on the diagonal
and oo elsewhere. Similarly, a scalar matrix would be a matrix with an element A € S on
the diagonal and oo elsewhere. Such a matrix commutes with any other square matrix (of
the same size). Multiplying a square matrix by a scalar amounts to multiplying it by the
corresponding scalar matrix.

1 2 2 00 1 2 3 4
Example3.2®(5 _1)2(00 2)@(5 _1):<7 1).

Then, tropical diagonal matrices have something (but not oo) on the diagonal and oo
elsewhere.

We also note that, in contrast with the “classical" situation, it is rather rare that a “tropi-
cal" matrix is invertible. More specifically (see [3, p.5]), the only invertible tropical matrices
are those that are obtained from a diagonal matrix by permuting rows and/or columns.

—1
a 00 —a o0
Examp1e4.<OO b ) _(oo —b>'
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Example 5. Conjugation:
-1
a oo o T V) el @ ) x y+(b—a) ‘
oo b z t oo b 2+ (a —b) t

3. DIGITAL SIGNATURE SCHEME DESCRIPTION

Here we offer a digital signature scheme that uses the algebra of tropical matrices (over
integers) as the platform.

We point out that in [4], we offered a digital signature scheme where security of private keys
relied on the NP-hardness of the tropical polynomial factorization problem [10]. The original
version of that scheme was attacked by Brown and Monico [I] who noticed (experimentally)
that, even if the selected private polynomials P(z), Py(z) were of a high degree, there is
sometimes a factor of P(z) = Pi(z) ® Py(x) that has a small degree, and then such a small
degree factor can be found just by brute force search. One therefore has to be careful with
key generation to avoid small degree factors in a product Pi(z) ® Py(x). (We note that
factorization of a tropical one-variable polynomial is not necessarily unique [10].)

With factoring tropical matrices, the situation is different: there is a theoretical explana-
tion (see |13]) why there cannot be a “small" tropical matrix factor if the originally selected
private factors were not of a small combinatorial rank (a.k.a. Barvinok rank). Therefore, an
attack in the spirit of [I] will not work with matrices.

Now the signature scheme is as follows.

Private:
— two matrices X, Y whose dimensions are m x k and k X n, respectively, where m, k and n
are parameters of the scheme.

Public:

-matrix T =X QY.

— a hash function H (e.g., SHA-512) and a (deterministic) procedure for converting values
of H to a matrix M of dimensions n x m (see Section [4.1)).

Signing a message s:

S1. Add a time stamp t to s and apply a hash function H to s combined with ¢. Denote
the result by H(s,t). Convert H(s,t) to a matrix M of dimensions n X m using a
deterministic public procedure.

S2. Select private session keys: two matrices U, V' whose dimensions are n x k and k x m,
respectively. Denote P = X®V, R=UQY,S =U®V. Check that (MeX)QU # U
and (Y ® M) @ V) # V; otherwise select different U, V.

S3. The signature of a message s (together with a time stamp t) is the following tuple of
matrices:

(M, M X)aU, (YoM)aV), P, R, S).
Verification:

V1. The verifier computes the hash H(s,t) and converts H(s,t) to a matrix M of dimen-
sions n X m using a deterministic public procedure. This is done to verify that M is
the correct hash of the message.
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V2. Denote Z = (M@ X®@V)® (U®Y ® M). Note that the matrix Z can be computed
from public information, specifically from the matrices M, P, and R.

V3. The verifier computes W = (M @ X)oU]@ (Yo M)dV]. W =S =U®V, the
signature is not accepted. The signature is accepted if and only if W = (M @ T'®
M)® Z®S.

Correctness follows from W = (M@ X)R(YQM))d(MRIXQV)B(URYQM)®(URV) =
MxSoM)®Z®S.

4. KEY GENERATION AND SUGGESTED PARAMETERS

The suggested parameter values are:

k=1

m=n=23§8

Entries of participating matrices are selected as follows:

— for matrices X, Y: uniformly at random from the range |0, 255].

— for matrices U, V: uniformly at random from the range [0, 255].

— for matrix M: entries are in the range [0, 255|; they are determined from the hash

H(s,t), see Section

4.1. Converting H(s,t) to a tropical matrix over Z. We suggest using a hash functions
from the SHA-3 family, specifically SHA3-512. We assume the security properties of SHA3-
512, including collision resistance and preimage resistance. We also assume that there is
a standard way to convert H(s,t) to a bit string of length 512. Then a bit string can be
converted to a tropical matrix over Z using the following ad hoc (deterministic) procedure.

Let B = H(s,t) be a bit string of length 512. We will convert B to a matrix M as follows.
For convenience, we are going to assume here that the dimensions of M are 8 x 8. Then
M has 64 entries. We can therefore split the bit string B of length 512 into 64 blocks of
length 8, and these blocks, interpreted as the binary form of integers, will be the entries of
M (populating M in whatever deterministic order).

5. WHAT IS THE HARD PROBLEM HERE?

The (computationally) hard problem that we employ in our construction is factoring a
given tropical m x n matrix as a product of an m x k£ matrix and a k£ x n matrix. The
computational hardness of this problem is confirmed by the following result:

Theorem 1. [13] The following problem is NP-complete for any & > 7: given an m X n
tropical matrix M, find out whether or not M is a product of an m X k matrix and a k X n
matrix.

The problem relevant to our situation is actually a search version of this problem: given
that M is a product of an m X k matrix X and a k£ x n matrix Y, find at least one pair
(X,Y) of matrices like that. However, it is well known that search in an NP-hard problem
is hard, too.
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6. POSSIBLE ATTACKS

We see several possible avenues that an attacker might consider in order to forge a signature
in this scheme.

(1) Factor the public key 7" into a product of an m x k matrix X’ and a k x n matrix
Y. But we believe a general instance of this problem to be as difficult as the most
difficult instances, and therefore intractable with appropriate choices of parameters.

(2) After observing some number of valid signatures, attempt to recover X or Y. If
an attacker knows some matrices M; and (M; ® X) @ U, perhaps there is some
non-obvious way to recover X (or similarly for Y). At present, we do not see any
viable attack along these lines. But if either X or Y could be recovered, it would
immediately lead to a factorization of T since the relevant ‘division problem’ is easy.

(3) A valid signature consists of a public key T" and (M, A, B, P, R, S) satisfying W # S
and W =A® B, where W = (MTM)®d (M®P)®(R® M)® S, and the
dimensions of the matrices are as follows:

M:nxm, A:nxk, B:kxm, P:mxm, R:nxn, S:nxm.

Perhaps an attacker could avoid the factorization problem by choosing P, R and S in
such a way as to make it easy to factor W7 In fact, the reason for the requirement
that W # S is this could otherwise be often accomplished by choosing U and V' with
very small entries, taking S = U ® V', and then taking P and R to have large entries
so that W =S = U ® V; in that case, the forger would trivially take A = U and
B = V. Since the protocol explicitly forbids that, perhaps an attacker could attempt
to choose PR and Stoyield W =M KT QM or W =M®®P or W =R® M,
however, none of the matrices M, P, or R have the proper dimensions to act as an
attacker’s proxy for A or B, so this does not seem to help an attacker.

7. PERFORMANCE AND SIGNATURE SIZE

Suppose that all private matrices X,Y, U,V and the hash matrix M are taken to have
entries in [0, N|NZ. The dimensions, range of entries, and representation size for the public
key and each signature component are then as follows:

Matrix dimensions range of entries rep. size, in bits
T mXxn [0,2N] mn log, 2N

M nxm [0, V] nmlog, N
MeX)oU nxk [0,2N] nklog, 2NN
YoM)eV kxm [0,2N] nklog, 2N

P mxm [0,2N] m?logy, 2N

R nxmn [0,2N] n?logy 2N

S nxm [0,2N] nmlogy, 2N

For the parameter values we suggest, n =m = 8, k = 7, and N = 255, this yields a public
key T" consisting of 576 bits, and signatures consisting of 3248 bits.

The most computationally expensive parts of this protocol are the hashing of the message
and the generation of random entries for X,Y, U, and V which require 2(m + n)klog, N
random bits, or 1792 random bits with the suggested parameter values. Beyond that one
tropical product is needed to compute 7', requiring no more than mkn additions and mkn
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comparisons, or 448 of each with the suggested parameter values. For computing the signa-
ture, general choices of U and V satisfy W # U ® V, so we may assume that each tropical
product and sum is computed only once. We find that once the message has been hashed
and random U,V chosen, the protocol requires no more than k(6nm + 2m? + 2n* +n +m)
addition /comparison operations. With the suggested parameter sizes, this is 4592 16-bit
integer operations in total. Even in Python, this is quite fast; our sample implementation
in Python running on a MacBookPro i7@3.10GHz takes an average of 0.00054 seconds to
generate a public key, 0.00161 second to sign a 1KB message, and 0.00140 seconds to verify
such a signature. See [5] for a GitHub repository.

8. AUTHENTICATION

Authentication is one of the basic building blocks of security. There are various methods
to authenticate a user (see e.g. the monograph [I4]), but here we focus on authentication
through a proof of knowledge (a.k.a. zero-knowledge proof). This method allows for em-
ploying various interesting computationally hard problems from graph theory, ring theory,
group theory, and other areas of mathematics (see e.g. [6]).

In this section, we employ the tropical matrix factorization problem to offer a simple
interactive challenge-response protocol for authentication.

The set-up is as in Section [3| Private keys are two matrices X,Y whose dimensions are
m X k and k X n, respectively. The public key is their product XY. Then the authentication
protocol goes as follows. (As usual, it has to be repeated several times to avoid blind
guessing.)

Al. Alice publishes a matrix S = U; XY U, for some matrices Uy, Uy of appropriate di-
mensions.

A2. Bob challenges Alice with either 0 or 1 bit, at random.

A3. (a) If the bit is 0, then Alice responds with the matrices Uy, Uy, and Bob verifies that
S = U1XYU2

(b) If the bit is 1, then Alice responds with the matrices U; X P and P~'YU, for a
random invertible k£ x k£ matrix P, and Bob verifies that the product of these matrices
equals S = U1 XY Us.

We note that the problem of factoring ABC' given matrices ABC' and B should be hard
because when B is the identity matrix, this becomes the usual factorization problem for the
matrix AC.

We also remind the reader that the only invertible tropical matrices are those that are
obtained from a diagonal matrix by permuting rows and/or columns, see the end of Section
211

We leave it at that; details, including key generation, suggested parameters, and possible
attacks, are similar to what we have for digital signatures above.

9. SECRET SHARING

Secret sharing is one of the classical problems in cryptography. The dealer wants to
distribute shares of a secret (e.g. of a password) among n parties so that if all of them
get together, they can recover the secret, but no group of less than n parties can do that.
Somewhat more generally, a (¢,n)-threshold scheme is a method of distributing a secret
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among n participants in such a way that any of the ¢ participants can recover the secret, but
any group of ¢ — 1 participants cannot.

This problem was solved by Shamir [12], and his elegant and perfectly secure solution is
now considered canonical.

A harder problem is where access control (through recovering a secret) is given to specific
groups (coalitions) of participants, regardless of the number of parties in a group. In this
section, we offer simple and efficient solutions to this problem, first based on tropical matrices
(in line with the first part of this paper), and then we offer a general method that can be
based on an arbitrary semigroup. For enhanced efficiency we suggest using the additive
semigroup of the field Fom, where the operation is simply bitwise XOR.

In either case, the main issue is how to reduce the total number of keys distributed to
participants. In most real-life applications this is not a problem since the number of coalitions
that are allowed access is typically not very large, but in theory, the number of coalitions
can be exponential in the number of participants.

9.1. Secret sharing based on tropical matrices. First we give a simple example to
illustrate our approach to this problem.

Example 6. Suppose there are 4 participants P;, and only the following coalitions should
have access to a secret: {Py, B}, { P2, P3s},{ P, Py}, {Ps, Ps}. Thus, neither {P, P;} nor
{Ps, P,} should be able to recover the secret.

To arrange that, the dealer would create several products of private matrices A, B,C, D, E, F’
and distribute them to the participants as follows. Here we will write just XY instead of
X ®Y to make it easier on the eyes. Thus, P, gets ABC and DFE, P, gets AB and DEF', P
gets A and CDEF, and P, gets BC and DEF. The whole secret is ABCDEF.

It is straightforward to check that the designated coalitions can indeed recover the product
ABCDEF'. The remaining subsets of participants that do not contain any of the designated
coalitions are {P,, Py} and {P;, P3}. In the coalition {P,, P}, the parties are jointly in
possession of the matrices AB, BC, and DEF. To recover ABCDFEF, the parties would
have to either factor AB to get A or factor BC' to get C.

In the coalition {P;, P3}, the parties are jointly in possession of the matrices ABC, DE,
A, and CDEF. To recover ABCDEF, the parties would have to either factor ABC' to get
AB or factor CDEF to get F.

More formally, suppose the coalition { P, P3} has somehow computed the matrix ABCDEF.
Then, since they are also in possession of the matrix ABC, they can recover the matrix
DEF. Then, from DEF and DFE, they can recover the matrix F, i.e., they can factor the
matrix CDFEF, thus solving a provably hard problem. Actually, they have factored the
matrix CDEF knowing the matrix DFE. Still, the problem of factoring XY Z given matrices
XY Z and Y should be hard because when Y is the identity matrix, this becomes the usual
factorization problem for the matrix X Z.

For a general situation, let the secret S be the product S = A --- A,,, where the dimen-
sions of the matrices A; make this product possible.

We are going to distribute various matrix products of the form A;A;,; --- Ax among par-
ticipants Py, ..., P, so that only specific subsets of participants would be able to recover the
secret S. (Of course, if a coalition C' of participants can recover S, then so does any superset
C" O C of participants.)
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Now let {P;,,..., P, } be a coalition of k participants. The way we distribute matrix
products to these participants is easier to describe as follows. Write down all the letters
Aq,..., A, in a row. Then insert dividers between some of the letters, so that the total
number of dividers is (k — 1) and there is at least one letter A; between any two dividers.
Then, going left to right, we assign to participants products of matrices corresponding to
sequences of letters between dividers. Thus, P;, gets the products of matrices corresponding
to the sequence of letters left of the leftmost divider; P, gets the products of matrices
corresponding to the sequence of letters between the first and second divider from the left,
etc.

There is one more rule. Suppose that dividers have already been distributed for coalitions
Ci,...,C;. Then, when distributing dividers for a coalition Cj;, we are allowed to put a
divider between letters A; and A;,; only if there was no divider between these letters when
we did distribution for C4,...,C;.

This rule imposes a restriction (a lower bound) on the number of matrices A; as a function
of the sum of the cardinalities of all (minimal) coalitions we want to give access to the secret
S. Specifically, the number of matrices A; has to be at least Zf:1(|Ci| — 1), where k is
the number of (minimal) coalitions we want to give access to. Thus, for our method to be
efficient, the number of coalitions has to be not too large (as a function of the total number
n of participants), which is often the case in real-life applications. If, on the other hand, the
set of (minimal) coalitions consists, say, of all possible coalitions of ¢ participants with ¢ on
the order of %, then the number of such coalitions as well as the number of matrices A; will
be exponential in n.

Now we have

Proposition 1. With the shares distribution as above:
(1) coalitions CY, ..., Cy and their supersets can recover the secret S;

(2) unless some of the participants can factor their assigned matrix, it is infeasible for any
coalition C' different from any C; (or a superset thereof) to recover the secret S.

Proof. Part (1) is trivial; it follows immediately from the way the secret shares are dis-
tributed.

For part (2), suppose C' = {P;,..., P, } is not among coalitions C},...,Cy that were
given access to S, and no subset of C is. If, among all the matrix products collectively
distributed to the participants in the coalition C', at least one factor A; is missing, then
these participants cannot possibly recover S = Ay --- A,,.

Now suppose no A; factor is missing among the matrix products collectively distributed
to the participants in C. Then there must be two participants in the coalition C, say P,
and P, such that there is an overlap in the matrix products assigned to them. For example,

., gets A1 Ay and P, gets Ay As. Now there are two cases to consider.

(a) No matrix product distributed to the participants in C' starts with As. Then in any
product of matrices distributed to the participants in C, either one (or both) of the Ay, A3
will be missing or As will occur twice. Then participants in C' cannot recover the secret S
unless As can be recovered either from A; A, or from AjAs.

(b) One of the participants, say P, is assigned a matrix product that starts with A, e.g.
A3A4As. Then in the coalition C" = {P,,, P, P, } no A; factor is missing among the

390
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matrix products collectively distributed to the participants in C’, but this coalition has one
less participant than C' does. Also, by our assumption, C’ is not among the coalitions that

were given access to the secret S. An obvious inductive argument completes the proof.
OJ

9.2. Secret sharing based on an arbitrary semigroup. Let GG be a semigroup, with the
operation written additively. Let S be the secret to be distributed to coalitions Ci,...,Cy
that are given access to S.

The dealer then distributes, to participants in each coalition C;, random keys that sum
up to S.

If G is large enough compared to the number k& of coalitions, then the probability for
an illegitimate coalition to recover the secret S is small. However, the advantage of the
“tropical" scheme in Section is that obtaining the secret by an illegitimate coalition is
equivalent to solving a provably hard problem (of factoring a tropical matrix).
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